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ABSTRACT: A strength of materials and elasticity ap-
proach was used in this study to determine the stiffness of
fiber-reinforced composites, by taking into account the con-
cept of boundary interphase. Theoretical expressions for
longitudinal transverse and shear moduli, as well as for
longitudinal Poisson’s ratio, were derived by use of this

model. Results derived from these expressions were com-
pared with others, to observe the discrepancies and evaluate
their validity.© 2005 Wiley Periodicals, Inc. J Appl Polym Sci 95:
1578–1588, 2005
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INTRODUCTION

The division of micromechanics stiffness evaluation
efforts into a strength of materials approach and an
elasticity approach, with its many subapproaches, is
rather arbitrary.1 Chamis and Sendeckyj2 divide mi-
cromechanics stiffness approaches into many more
classes: netting analysis, strength of material ap-
proaches, self-consistent models, variational tech-
niques using energy bounding principles, exact solu-
tions, statistical approaches, discrete element meth-
ods, semiempirical approaches, and microstructure
theories. All the approaches have the common objec-
tive of the prediction of composite stiffness. All except
the first two approaches use some or all of the princi-
ples of elasticity theory to varying degrees so are here
classed as elasticity approaches. This simplifying and
arbitrary division is useful because the objective here
is to merely become acquainted with advanced micro-
mechanics theories after the basic concepts have been
introduced by use of strength of materials type rea-
soning.

The variational energy principles of classical elastic-
ity theory were used to determine upper and lower
bounds on the moduli of unidirectional fiber-rein-
forced composites. However, that approach generally
leads to bounds that may not be sufficiently close for
practical use.

A large critique on theories predicting thermoelastic
properties of fibrous composites was presented by
Chamis and Sendeckyj.2 Also, a large survey, the pur-

pose of which is to review the analysis of composite
materials from the applied mechanics and engineering
science perspective, was carried out by Hashin.3

The majority of the models introduced for explain-
ing the mechanical behavior of composites have a
common characteristic of considering the fiber–matrix
interface as a perfect mathematical surface. However,
in reality the situation is much different because of the
roughness of the filler.

Thus, around an inclusion embedded in a matrix a
rather complex situation develops, consisting of areas
of imperfect bonding, permanent stresses resulting
from shrinkage, and high-stress gradients or even
stress singularities, attributed to the geometry of the
inclusions, voids, and microcracks, for example.

Moreover, the interaction of the fiber with the ma-
trix is usually a much more complicated procedure
than a simple mechanical effect. The presence of a
fiber actually restricts the segmental and molecular
mobility of the polymeric matrix, as absorption inter-
action in polymer surface layers into fibers occurs. It is
then obvious that, under these conditions, the quality
of adhesion can hardly be quantified and a more thor-
ough investigation by assuming the existence of a
third phase between matrix and fiber is necessary.

Examples of three-phase work dealing with fiber
composites have been given by Theocaris et al.4 Mi-
kata and Taya,5 Pagano and Tandon,6 Benveniste et
al.,7 Steif and Dollar,8 and Achenbach and Zhu.9

In this article, by the aid of a strength of materials
approach and an elasticity approach, an investigation
was carried out to determine theoretical expressions
for longitudinal, transverse, and shear moduli, as well
as for longitudinal Poisson’s ratio using the recently
developed interphase model.
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STRENGTH OF MATERIALS APPROACH
TO STIFFNESS

The main feature of the strength of materials approach
is that certain simplifying assumptions are made re-
garding the mechanical behavior of a composite ma-
terial. The most prominent assumption is that the
strains in the fiber direction of a unidirectional fibrous
composite are the same in the fibers, in the interphase,
and in the matrix, as shown in Figure 1. Because the
strains are the same in the three phases, then it is
obvious that sections normal to the 1-axis that were
plane before being stressed remain plane after stress-
ing. We shall derive, on that basis, the strength of
materials expressions for the apparent orthotropic
moduli of a unidirectionally reinforced fibrous com-
posite material.

Longitudinal elastic modulus E1

The longitudinal elastic modulus of the composite in
the 1-direction, that is, in the fiber direction can be
determined as follows. From Figure 2 the strain �1 is
given as

�1 � �L/L (1)

where �1 applies for fibers, interphase, and matrix
according to the basic assumption. When the three
constituent materials behave elastically, the stresses
are

�f � Ef�1 �i � Ei�1 �m � Em�1 (2a,b,c)

The average stress �1 acts on a cross-sectional area A,
�f acts on the cross-sectional area of the fibers Af, �i

acts on the cross-sectional area of the interphase Ai,
and �m acts on the cross-sectional area of the matrix
Am. Thus, the resultant force on the element of com-
posite material is

P � �1A � �fAf � �iAi � �mAm (3)

By substitution of eq. (2) into eq. (3) and recognition
that

�1 � E1�1 (4)

apparently

E1 � Ef�Af/A� � Ei�Ai/A� � Em�Am/A� (5)

However, the volume fraction of the three phases can
be written as

�f � Af/A �i � Ai/A �m � Am/A (6a,b,c)

Thus

E1 � Ef�f � Ei�i � Em�m (7)

which is a “refined” law of mixtures expression for the
apparent Young’s modulus in the direction of the
fibers.

Transverse elastic modulus E2

The apparent Young’s modulus E2, in the direction
transverse to the fibers, can be determined assuming
that the same transverse stress �2 is to be applied to
fiber, interphase, and matrix as in Figure 3. The strains
in the three phases are thus

�f � �2/Ef �i � �2Ei �m � �2/Em (8a,b,c)

The transverse dimension over which, on the average,
�f acts is approximately �fW, whereas �i acts on �iW

Figure 1 (a) Schematic depiction of the model used for the
representative volume element of a unidirectional fiber com-
posite; (b) its cross-sectional area.

Figure 2 Representative volume element loaded in 1-direc-
tion for E1.
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and �m acts on �mW. Thus, the total transverse defor-
mation is

�2W � �fW�f � �iW�i � �mW�m (9)

or

�2 � �f�f � �i�i � �m�m (10)

which becomes, upon substitution of eq. (8),

�2 � �f��2/Ef� � �i��2/Ei� � �m��2/Em� (11)

but

�2 � E2�2 � E2��f��2/Ef� � �i��2/Ei� � �m��2/Em��

(12)

whereupon

E2 � EfEiEm/�EiEm�f � EfEm�i � EfEi�m� (13)

Longitudinal Poisson’s ratio �12

The so-called major Poisson’s ratio �12 can be obtained
by use of an approach similar to the analysis for E1.
The major Poisson’s ratio is defined as

�12 � ��2/�1 (14)

for the stress state �1 � � and all other stresses are
zero. The deformations are depicted in Figure 4. The
transverse deformation �W is

�W � �W�2 � W�12�1 (15)

but is also

�W � �f � �i � �m (16)

In the manner of the analysis for the transverse
Young’s modulus E2, the deformations �f, �i, and �m

are approximately

�f � W�f�f�1 �i � W�i�i�1 �m � W�m�m�1

(17a,b,c)

Thus upon combination of eqs. (15)–(17), division by
�1W yields

�12 � �f�f � �i�i � �m�m (18)

which is a “refined” law of mixtures for the major
Poisson’s ratio.

In-plane shear modulus G12

The in-plane shear modulus G12 is determined by
assuming that the shearing stresses on the fiber, the
interphase, and the matrix are the same. The loading is
shown in Figure 5. By virtue of the basic assumption

�f � �/Gf �i � �/Gi �m � �/Gm (19)

The nonlinear shear stress–shear strain behavior typ-
ical of fiber-reinforced composites is ignored (i.e., the
behavior is regarded as linear).

On a microscopic scale, the deformations are shown
in Figure 6. The total shearing deformation is defined
as

� � �W (20)

Figure 3 Representative volume element loaded in 2-direc-
tion for E2.

Figure 4 Representative volume element loaded in 1-direc-
tion for �12.

Figure 5 Representative volume element loaded in shear
for G12.
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and is made up of, approximately

�f � �fW�f �i � �iW�i �m � �mW�m (21a,b,c)

Then given that � � �f � �i � �m, division by W
yields

� � �f�f � �i�i � �m�m (22)

or upon substitution of eq. (19) and realization that

� � �/G12 (23)

Equation (22) can be written as

�/G12 � �f��/Gf� � �i��/Gi� � �m��/Gm� (24)

Finally

G12 � GfGiGm/�GiGm�f � GfGm�i � GfGi�m� (25)

which is the same type of expression as was obtained
for the transverse Young’s modulus E2.

Summarizing, it can be said that the foregoing are
but examples of the types of strength of materials
approaches that can be used. Other assumptions of
physical behavior lead to different expressions for the
four moduli of a unidirectional fiber-reinforced com-
posite. For example, Ekvall10 obtained a modification
of the expressions for E1 and E2 in which the triaxial
stress state in the matrix, arising from fiber restraint, is
accounted for. Thus eqs. (7) and (13) can be written as

E1 � Ef�f � Ei�i � E	m�m (26)

E2 � EfEiE	m/�EiE	m�f � EfE	m�i � EfEi�m�1 	 �m
2 ��

(27)

where

E	m � Em/�1 	 2�m
2 � (28)

ELASTICITY APPROACH TO STIFFNESS

Bounding techniques of elasticity

Paul11 was apparently the first to use the variational
(bounding) techniques of linear elasticity to examine
the bounds on the moduli of multiphase materials. His
work was directed toward analysis of the elastic mod-
uli of alloyed metals rather than toward fibrous com-
posites. Accordingly, the treatment is for an isotropic
composite material made of isotropic constituents.
The modulus of the basic matrix is Em, the modulus of
the filler material is Ef, the modulus of the interphase
is Ei, whereas the modulus of the composite material is
E. The volume fractions of the constituents are �f, �i,
and �m such that

�f � �i � �m � 1 (29)

Obviously, any relationship for the composite modu-
lus E must yield E � Em for �m � 1 and E � Ef for �f � 1
because in these cases no interphase should exist (i.e.,
�i � 0).

Lower bound on apparent Young’s modulus

The basis for the determination of a lower bound on
the apparent Young’s modulus is application of the
minimum complementary energy which can be stated
as: Let the tractions (forces and moments) be specified
over the surface of a body. Let �x

0, �y
0, �z

0, �xy
0 , �yz

0 , �zx
0 be

a state of stress that satisfies the stress equations of
equilibrium and the specified boundary conditions.
Let U0 be the strain energy for the stress state �x

0, �y
0,

�z
0, �xy

0 , �yz
0 , �zx

0 given by use of the stress–strain rela-
tionships

�x � ��E/�1 � ���1 	 2�����x � �y � �z�
� �E/�1 � ����x···

�xy � G�xy � �E/2�1 � ����xy (30)

and the expression for the strain energy

U � �1/2� �
V

��x�x � �y�y � �z�z � �xy�xy � �yz�yz

� �zx�zx� dV (31)

Then, the actual strain energy U in the body attributed
to the specified loads cannot exceed U0, that is,

U 
 U0 (32)

To find a lower bound on the apparent Young’s mod-
ulus E, load the basic uniaxial test specimen with

Figure 6 Shear deformation of a representative volume
element.
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normal stress on the ends. The internal stress field that
satisfies this loading and the stress equations of equi-
librium is

�x
0 � � �y

0 � �z
0 � �xy

0 � �yz
0 � �zx

0 � 0 (33)

The strain energy for the stresses in eq. (33) is

U0 �
1
2 �

V

��x
0�2

E dV �
�2

2 �
V

dV
E (34)

However, E is obviously nonconstant over the volume
because the filler has modulus Ef over volume �fV, the
interphase has modulus Ei over volume �Vi, and the
matrix has modulus Em over volume �mV, where V is
the total volume. Thus

�
V

dV
E � �

Vf

dV
Ef

� �
Vi

dV
Ei

� �
Vm

dV
Em

(35)

or

�
V

dV
E �

�fV
Ef

�
�iV
Ei

�
�mV
Em

(36)

From eqs. (34) and (36) we obtain

U0 �
�2

2 � �f

Ef
�

�i

Ei
�

�m

Em
�V (37)

However, by virtue of the inequality U 
 U0 and
because U � 1

2 [�2/E)V], the above relationship can be
written as

1
2

�2

E V 

�2

2 � �f

Ef
�

�i

Ei
�

�m

Em
�V (38)

or

1
E 


�f

Ef
�

�i

Ei
�

�m

Em
(39)

and finally

E �
EfEiEm

EiEm�f � EfEm�i � EfEi�m
(40)

which is a lower bound on the apparent Young’s
modulus E, of the composite material in terms of the
moduli and volume fractions of the three phases. This
bound coincides with the value for the modulus trans-
verse to fibers by the strength of materials approach.

Upper bound on apparent Young’s modulus

The basis for the determination of an upper bound on
the apparent Young’s modulus is application of the
principle of minimum potential energy, which can be
stated as: Let the displacements be specified over the
surface of the body except where the corresponding
traction is zero. Let �*x, �*y, �*z, �*xy, �*yz, �*zx be any com-
patible state of strain that satisfies the specific dis-
placement boundary conditions. Let U* be the strain
energy of the strain state �*x, �*y, �*z, �*xy, �*yz, �*zx by use of
the stress–strain relationships of eq. (30), and the ex-
pression for the strain energy given by eq. (31).

Then, the actual strain energy U in the body arising
from the specified displacements cannot exceed U*,
that is,

U 
 U* (41)

To find an upper bound on the apparent Young’s
modulus E, subject the basic uniaxial test specimen to
an elongation eL, where e is the average strain and L is
the specimen length. The internal strain field that cor-
responds to the average strain at the boundaries of the
specimen is

�*x � � �*y � �*x � ��� �*xy � �*yz � �*zx � 0 (42)

where � is the apparent Poisson’s ratio of the compos-
ite. Then by using the stress–strain relationships of eq.
(30), the stresses in the three phases for the given
strain field are

�*x,f �
1 	 �f 	 2�f�

1 	 �f 	 2�f
2 Ef� �*y,f � �*z,f �

�f 	 �

1 	 �f 	 2�f
2 Ef�

�*xy,f � �*yz,f � �*zx,f � 0 (43)

for the filler

�*x,i �
1 	 �i 	 2�i�

1 	 �i 	 2�i
2 Ei� �*y,i � �*z,i �

�i 	 �

1 	 �i 	 2�i
2 Ei�

�*xy,i � �*yz,i � �*zx,i � 0 (44)

for the interphase

�*x,m �
1 	 �m 	 2�m�

1 	 �m 	 2�m
2 Em�

�*y,m � �*z,m �
�m 	 �

1 	 �m 	 2�m
2 Ei�

�*xy,m � �*yz,m � �*zx,m � 0 (45)

for the matrix.
The strain energy in the composite material is ob-

tained by substituting the strains from eqs. (42) and
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the stresses from eqs. (43)–(45) in the strain energy, eq.
(30)

U* �
�2

2 �
Vf

1 	 �f 	 4�f� � 2�2

1 	 �f 	 2�f
2 Ef dV

�
�2

2 �
Vi

1 	 �i 	 4�i� � 2�2

1 	 �i 	 2�i
2 Ei dV

�
�2

2 �
Vm

1 	 �m 	 4�m� � 2�2

1 	 �m 	 2�m
2 Em dV (46)

or

U* �
�2

2 �1 	 �f 	 4�f� � 2�2

1 	 �f 	 2�f
2 Ef�f

�
1 	 �i 	 4�i� � 2�2

1 	 �i 	 2�i
2 Ei�i

�
1 	 �m 	 4�m� � 2�2

1 	 �m 	 2�m
2 Em�m�V (47)

However, by virtue of the inequality U 
 U* and the
definition U � 1

2 E�2V, after some algebra we find the
upper bound as

E 

1 	 �f 	 4�f� � 2�2

1 	 �f 	 2�f
2 Ef�f

�
1 	 �i 	 4�i� � 2�2

1 	 �i 	 2�i
2 Ei�i

�
1 	 �m 	 4�m� � 2�2

1 	 �m 	 2�m
2 Em�m (48)

The value of the Poisson’s ratio � for the composite
is unknown at this stage of the analysis, so the upper
bound on E is nonspecific. In accordance with the
principle of minimum potential energy the expression
for the strain energy U* must be minimized with
respect to the unspecified constant � to specify the
bound on E. This procedure consists of determining
where


U*

�

� 0 (49)

and at the same time


2U*

�2 � 0 (50)

First


U*

�

�
�2V

2 � �4�f � 4�

1 	 �f 	 2�f
2 Ef�f �

�4�i � 4�

1 	 �i 	 2�i
2 Ei�i

�
�4�m � 4�

1 	 �m 	 2�m
2 Em�m� � 0 (51)

which is zero when

� �

�1 	 �f 	 2�f
2�Ef�f�f � �1 	 �i 	 2�i

2�
Ei�i�i � �1 	 �m 	 2�m

2 �Em�m�m

�1 	 �f 	 2�f
2�Ef�f � �1 	 �i 	 2�i

2�
� Ei�i � �1 	 �m 	 2�m

2 �Em�m

(52)

The second derivative of U* is


2U*

�2 �

�2V
2 � 4Ef�f

1 	 �f 	 2�f
2 �

4Ei�i

1 	 �i 	 2�i
2

�
4Em�m

1 	 �m 	 2�m
2 � (53)

Given that �f 
 1
2, �i 
 1

2, �m 
 1
2 (the usual limit on

Poisson’s ratio for an isotropic material) the value of

2U*/
�2 is seen to be always positive, given that the
terms 1 � �f � 2�f

2, 1 � �i � 2�i
2, and 1 � �m � 2�m

2 are
always positive when � 
 1

2.
Finally, because 
2U*/
�2 is always positive, the

value of U* when eq. (52) is used, corresponding to a
minimum, maximum, or inflection point on the curve
for U* as a function of �, is proved to be a minimum.

The value of Poisson’s ratio � for the composite has
been derived explicitly as in eq. (52). Thus, the explicit
upper bound on E can be obtained by substituting this
expression for � in the expression for the upper bound
on E in terms of � given by eq. (48). For the special case
in which �f � �i � �m, eq. (52) reduces to � � �f � �i

� �m, so the upper bound on E reduces to

E 
 Ef�f � Ei�i � Em�m (54)

which is the value of the apparent Young’s modulus
E1, in the fiber direction of a fibrous composite derived
by a strength of materials approach. Thus the expres-
sion for E1 is an upper bound on the actual E1. In
addition, the strength of materials solution obviously
includes an implicit equality of the Poisson’s ratios of
the constituent materials.

THE INTERPHASE MODEL

Let us consider the model for the representative vol-
ume element (RVE) for a fiber-reinforced composite
presented in Figure 1(b). The composite consists of
three different materials. The fiber is surrounded by
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the interphase and this, in turn, is surrounded by the
matrix.

If we denote by rf, ri, and rm the outer radii of the
fiber, the interphase, and the matrix circular sections,
respectively, then the fractions of the respective
phases are given by

�f �
rf

2

rm
2 �i �

ri
2 	 rf

2

rm
2 �m �

rm
2 	 ri

2

rm
2 (55)

with

�f � �i � �m � 1

where � denotes the volume fraction and the indices f,
i, and m correspond to the fiber, interphase, and ma-
trix, respectively.

As the fiber-volume fraction is increased, the pro-
portion of macromolecules, characterized by a re-
duced mobility, is also increased. This is equivalent
with an increase in interphase volume fraction and
leads to the conclusion, stated in Lipatov,12 that is a
relation between �cp, expressing the sudden change in
specific heat at the glass-transition region of the sub-
stances, and the interphase volume fraction �f. This
relation for fiber composites is expressed by

�rf � �r
rf

� 2

	 1 �
��f

1 	 �f
(56)

where �r is the thickness of interphase and the param-
eter � is given by12

� � 1 	
�cp

f

�cp
0 (57)

in which �cp
f and �cp

0 are the sudden changes of the
specific heat for the filled and the unfilled polymer,
respectively, at their respective glass-transition re-
gions.

Then, by measuring with the aid of thermal analysis
(DSC measurements) the specific heat jumps (�cp’s) at
the glass transition of a fiber composite and its respec-
tive polymer made exclusively from the matrix mate-
rial, the weight factor � may be evaluated and the
thickness of the interphase can be determined from
the volume fraction of the fibers.

To evaluate the interphase elastic modulus Ei(r),
shear modulus Gi(r) and Poisson’s ratio �i(r) modes of
variation were considered. Generally, for the above-
mentioned elastic constants Mi(r), a polynomial vari-
ation of the form

Mi�r� � f�r� � Arn � Brn�1 � Crn�2 � · · · (58)

with rf 
 r 
 ri can be considered. The constants A, B,
C, . . . can be evaluated from the boundary conditions:

At r � ri 3 Mi�r� � Mm

At r � rf 3 Mi�r� � kMf (59)

together with the condition dMi(r)/dr � 0 wherever
we have an extremum. However, to evaluate the max-
imum influence of the interphase, the coefficient k is
taken as k � 1, thus assuming that the interphase
constants Mi(r) are equal to Mf at r � rf. In this study
the parabolic variation of Mi(r) is considered. From eq.
(58) for n � 2 we have

Mi�r� � Ar2 � Br � C (60)

and the boundary conditions [eq. (59)] with dMi(r)/dr
� 0 at r � ri. By applying these conditions we find

Mi�r� �
Mf 	 Mm

�ri 	 rf�
2 r2 	

2�Mf 	 Mm�ri

�ri 	 rf�
2 r

�
Mfri

2 � Mmrf
2 	 2Mmrfri

�ri 	 rf�
2 (61)

The average values for the interphase constants can be
calculated by

Mi �
1
�i
�

rf

ri

Mi�r� d� �
2�f

�irf
2 �

rf

ri

Mi�r� dr (62)

The elastic constants of fiber and matrix material
used in the theoretical calculations are as follows:

Ef � 72 GPa Em � 3.5 GPa �f � 0.20 �m � 0.36

EXPERIMENTAL WORK

The material that was used in this study was Perma-
Glas XEB5/1 of Permali Gloucester Ltd. (Gloucester,
UK), which is a unidirectional glass fiber–epoxy resin
laminate fabricated by using filament-winding meth-
ods in the form of about 5.8-mm-thick sheets. The
glass-fiber–epoxy sheets contained about 80%, by
weight, glass fibers, embedded in an Araldite MY
750/HT 972 (Ciba-Geigy, Leeds, UK) epoxy resin. This
is based on the diglycidyl ether of bisphenol A and
was cured using an aromatic amine hardener. The
volume fraction �f was determined, as customary, by
igniting samples of the composite and weighing the
residue, which gave the weight fraction of glass as 79.6
� 0.28%. This and the measured values of the relative
densities of PermaGlas (�f � 2.55) and of the epoxy
matrix (�m � 1.20) gave the value �f � 0.65. The fibers
had a diameter of 12 � 10�6 m.
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On the other hand, chip specimens with a 4-mm
diameter and thicknesses varying between 1 and 1.5
mm, made of the fiber composite and of the matrix
material, were tested on a differential scanning calo-
rimetry (DSC) thermal analyzer at the zone of the
glass-transition temperature to determine the specific
heat values. The values of the weight factor � were
derived from the values of �cp

f and �cp
0 measured from

the �cp � f(T) diagrams, where T denotes the temper-
ature. The values of � determined from these DSC
tests allowed the evaluation of the thickness �r the
interphase according to eqs. (56) and (57).

RESULTS AND DISCUSSION

Figure 7 presents the typical DSC trace for the varia-
tion of the specific heat versus the temperature. A
jump �cp can be seen in the specific heat at the glass-
transition region. The values of the factor � in eq. (56)
were derived from the values of �cp

f and �cp
0 measured

from the �cp � f(T) diagram of this figure. The values
of �, determined from these DSC tests, allowed the
evaluation of the thickness �r of the interphase for the
composite.

Figure 8 presents the variation of �cp values at the
glass-transition region, the factor �, as well as the
values �i and �m versus the fiber volume fraction �f for
the E-glass fiber–reinforced composites.

It has been shown13 that for unidirectional glass
fiber–reinforced epoxy composites, a simple relation
between the volume fraction of the interphase �i and
fiber volume fraction �f holds:

�i � C�f
2 (63)

with the constant C found to be 0.123.
From this figure it can be observed that the inter-

phase volume fraction �i increases with increasing
fiber content �f. On the contrary, the matrix volume
fraction �m decreases, as expected, because it can be
said that the naturally developed interphase consti-
tutes an alteration of the matrix. It can also be seen that
the change in the specific heat �cp decreases when 0

 �f 
 0.10 when the fiber volume fraction increases,
then increases slightly when 0.10 
 �f 
 0.40, and
finally seems to be constant for �f 
 0.40.

Figure 9 shows the variation of the elastic modulus
in the direction of fibers, E1, as calculated through eq.
(7) normalized by Em. It represents a linear variation of
the apparent Young modulus E1 from Em to Ef. This
variation is analogous to that given by the law of
mixtures.

The values obtained from eq. (7), however, are su-
perior to those given by the mixtures law because, as
calculated by eqs. (61) and (62), the interphase modu-
lus Ei is greater than the matrix modulus Em and
because �i � 1 � �f � �m. Thus

E1 � Ef�f � Em�m 	 Ei��f � �m� � Ei

which is greater than that given by the mixture law, E1
� Ef�f � Em�m.

Figure 7 Typical DSC trace for the specific heat jump �cp at
the glass-transition region of E-glass fiber epoxy composite.

Figure 8 Variation of the specific heat jumps �cp at the
glass-transition temperature of E-glass fiber epoxy compos-
ite and the values of the � factor and the interphase volume
fraction �i versus fiber content �f.
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In the same figure, designated by the dashed line,
the theoretical values derived by Eckvall10 and given
in eqs. (26) and (28) are shown. These values are
slightly above those given by the developed theoreti-
cal model.

The experimental results show a slight discrepancy
with theoretical values; that is, those given in Whitney
and Riley14 are below the theoretical values derived
by the developed theoretical model, whereas those
given in Clements and Moore15 are above the theoret-
ical values. It can be said that the coincidence is satis-
factory.

In Figure 10 the variation of the elastic modulus in
the direction transverse to the fibers E2, as calculated
through eq. (13) normalized by Em, is presented. For �f

� 1 the modulus predicted is that of fibers. The values
obtained from eq. (13) are superior to those given by
the theoretical expression, which does not take into
account the interphase (inverse mixtures law), because
the interphase modulus Ei, calculated by eqs. (61) and
(62), is greater than the matrix modulus Em and be-
cause �i � 1 � �f � �m. Thus

E2

Em
�

Ef

�Em�f � Ef�m� �
EfEm

Ei
�1 	 �f 	 �m�

which is greater than that given by the inverse mixture
law

E2

Em
�

Ef

Em�f � Ef�m

It is known that a perfect bond between fibers is
implied if a tensile �2 is applied, whereas no such
bond is implied if a compressive �2 is applied. Also,
more than 50% by volume of fibers is required to raise
the transverse modulus E2 to twice the matrix modu-
lus. This means that the fibers do not contribute much
to the transverse modulus unless the fiber volume
fraction is very high. Obviously, the assumptions in-
volved in the foregoing derivation are not entirely
consistent. There is a transverse strain mismatch at the
boundary, mainly between the fiber and interphase
and also between matrix and interphase by virtue of
eq. (8). Moreover, the transverse stresses in the fiber,
the interphase, and in the matrix are not likely to be
the same. Rather, a complete match of displacements
across the boundaries fiber–interphase and inter-
phase–matrix would constitute a rigorous solution to
determine the apparent transverse elastic modulus.
Such a solution can be accomplished only by use of the
theory of elasticity.

Another observation on this solution is that, because
of the difference in the Poisson’s ratios of the fiber, the
interphase and the matrix longitudinal stresses are
induced in the three phases (with a net resultant lon-
gitudinal force of zero), with accompanying shearing
stresses at the fiber–interphase and interphase–matrix
boundaries. Such shearing stresses will naturally arise
under some stress states. Thus, this material charac-
teristic cannot be regarded as desirable or indicative of
an appropriate solution. In the same figure, indicated
by the dashed line, the theoretical values derived by
Eckvall10 and given in eqs. (27) and (28) are shown.
These values are above those given by the developed
theoretical model for �f 
 0.8.

Figure 9 Variation of E1 versus filler volume fraction.

Figure 10 Variation of E2 versus filler volume fraction.
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The experimental results given in Clements and
Moore15 show some discrepancy with the theoretical
values derived by the developed theoretical model,
although they are in very good agreement with those
derived by Eckvall.10

Figure 11 presents the variation of the major Poisson
ratio �12, as calculated from eq. (18), normalized by �m.
This variation is analogous to that given by the mix-
tures law. However, the values obtained from eq. (18)
are inferior to those given by the law of mixtures
because the interphase Poisson ratio �i, calculated by
eqs. (61) and (62), is less than the matrix Poisson ratio
�m and because �i � 1 � �f � �m. Thus

�12 � �f�f � �m�m 	 �i��f � �m� � �i

which is less than that given by the mixture law �12
� �f�f � �m�m.

In the same figure the experimental results given in
Whitney and Riley14 are shown. These values are in
good agreement with those derived from the devel-
oped theoretical model.

In Figure 12 the variation of the in-plane shear
modulus G12, as calculated from eq. (25) and normal-
ized by Gm, is presented.

As in the case of E2 the matrix modulus is the
dominant term in this expression. Only for a fiber
volume near 50% of the total volume does G12 rise
above twice Gm. This variation is again analogous to
that given by the mixtures law. However, the values
obtained from eq. (25) are superior to those given by
the theoretical expression, which does not take into
account the interphase (inverse mixtures law), because
the interphase modulus Gi, calculated by eqs. (61) and
(62), is greater than the matrix modulus Gm and be-
cause �i � 1 � �m � �f. Thus

G12

Gm
�

Gf

�Gm�f � Gf�m� �
GfGm

Gi
�1 	 �f 	 �m�

which is greater than that given by the inverse mix-
tures law

G12

Gm
�

Gf

Gm�f � Gf�m

In the same figure the experimental results given in
Clements and Moore15 are shown. These values do not
show agreement with those derived from the devel-
oped theoretical model. This formula seems to show
the greatest degree of discrepancy with experiments.

In Figure 11 is also included the variation of the
Poisson ratio �, as calculated from eq. (52), normalized
by �m. As can be seen the values of Poisson ratio, as
derived by this expression, are well below the values
given by eq. (18). This confirms that the expression of
eq. (52) corresponds to a minimum for the Poisson
ratio of the composite, as stated earlier in the theoret-
ical analysis.

On the contrary, if these values of Poisson ratio � are
substituted in eq. (48) the values obtained are slightly
greater than those obtained from eq. (7). This confirms
that the expression of eq. (48) indeed constitutes an
upper bound for the elastic modulus of the composite
material, as stated earlier in the theoretical analysis.

Figure 11 Variation of �12 versus filler volume fraction.

Figure 12 Variation of G12 versus filler volume fraction.
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CONCLUSIONS

The concept of boundary interphase between the fibers
and the matrix was used to obtain expressions for the
longitudinal and transverse elastic moduli E1 and E2, the
longitudinal Poisson ratio �12, and the in-plane shear
modulus G12 of the composite material, using a strength
of materials approach. The values obtained show some
discrepancy compared with those obtained from the
mixtures law or transverse mixtures law, which does not
take the interphase into account. Also, using an elasticity
approach bounds for the elastic modulus and Poisson
ratio of the composite were found once again by taking
the interface into account. The values obtained present a
slight difference with those obtained from the theoretical
expressions that do not take the interphase into account.

The experimental results are in very good agree-
ment with the theoretical values derived from the
developed model in the case of the longitudinal elastic
modulus and Poisson ratio. However, they are not in
good agreement with those for the transverse elastic
modulus and show substantial discrepancy with those
for the shear modulus.
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